Plasma hyperosmolality elevates the internal temperature threshold for active thermoregulatory vasodilation during heat stress in humans.
نویسندگان
چکیده
Plasma hyperosmolality delays the response in skin blood flow to heat stress by elevating the internal temperature threshold for cutaneous vasodilation. This elevation could be because of a delayed onset of cutaneous active vasodilation and/or to persistent cutaneous active vasoconstriction. Seven healthy men were infused with either hypertonic (3% NaCl) or isotonic (0.9% NaCl) saline and passively heated by immersing their lower legs in 42 degrees C water for 60 min (room temperature, 28 degrees C; relative humidity, 40%). Skin blood flow was monitored via laser-Doppler flowmetry at sites pretreated with bretylium tosylate (BT) to block sympathetic vasoconstriction selectively and at adjacent control sites. Plasma osmolality was increased by approximately 13 mosmol/kgH(2)O following hypertonic saline infusion and was unchanged following isotonic saline infusion. The esophageal temperature (T(es)) threshold for cutaneous vasodilation at untreated sites was significantly elevated in the hyperosmotic state (37.73 +/- 0.11 degrees C) relative to the isosmotic state (36.63 +/- 0.12 degrees C, P < 0.001). A similar elevation of the T(es) threshold for cutaneous vasodilation was observed between osmotic conditions at the BT-treated sites (37.74 +/- 0.18 vs. 36.67 +/- 0.07 degrees C, P < 0.001) as well as sweating. These results suggest that the hyperosmotically induced elevation of the internal temperature threshold for cutaneous vasodilation is due primarily to an elevation in the internal temperature threshold for the onset of active vasodilation, and not to an enhancement of vasoconstrictor activity.
منابع مشابه
Relationship of osmotic inhibition in thermoregulatory responses and sweat sodium concentration in humans.
Heat acclimatization improves thermoregulatory responses to heat stress and decreases sweat sodium concentration ([Na(+)](sweat)). The reduced [Na(+)](sweat) results in a larger increase in plasma osmolality (P(osmol)) at a given amount of sweat output. The increase in P(osmol) inhibits thermoregulatory responses to increased body core temperature. Therefore, we hypothesized that the inhibitory...
متن کاملPlasma hyperosmolality improves tolerance to combined heat stress and central hypovolemia in humans.
Heat stress profoundly impairs tolerance to central hypovolemia in humans via a number of mechanisms including heat-induced hypovolemia. However, heat stress also elevates plasma osmolality; the effects of which on tolerance to central hypovolemia remain unknown. This study examined the effect of plasma hyperosmolality on tolerance to central hypovolemia in heat-stressed humans. With the use of...
متن کاملModification of cutaneous vasodilator response to heat stress by daytime exogenous melatonin administration.
In humans, the nocturnal fall in internal temperature is associated with increased endogenous melatonin and with a shift in the thermoregulatory control of skin blood flow (SkBF), suggesting a role for melatonin in the control of SkBF. The purpose of this study was to test whether daytime exogenous melatonin would shift control of SkBF to lower internal temperatures during heat stress, as is se...
متن کاملDivergent roles of plasma osmolality and the baroreflex on sweating and skin blood flow.
Plasma hyperosmolality and baroreceptor unloading have been shown to independently influence the heat loss responses of sweating and cutaneous vasodilation. However, their combined effects remain unresolved. On four separate occasions, eight males were passively heated with a liquid-conditioned suit to 1.0°C above baseline core temperature during a resting isosmotic state (infusion of 0.9% NaCl...
متن کاملSkin blood flow in adult human thermoregulation: how it works, when it does not, and why.
The thermoregulatory control of human skin blood flow is vital to the maintenance of normal body temperatures during challenges to thermal homeostasis. Sympathetic neural control of skin blood flow includes the noradrenergic vasoconstrictor system and a sympathetic active vasodilator system, the latter of which is responsible for 80% to 90% of the substantial cutaneous vasodilation that occurs ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 297 6 شماره
صفحات -
تاریخ انتشار 2009